বিজ্ঞানের বিভিন্ন বিষয় সুনির্দিষ্টভাবে জানতে হলে কোন বা কোন ধরনের পরিমাপের প্রয়োজন হয়। পদার্থের যে সব ভৌত বৈশিষ্ট্য পরিমাপ করা যায় তাদেরকে রাশি (quantity) বলে। যেমন, দৈর্ঘ্য, ভর, সময়, আয়তন, বেগ, কাজ ইত্যাদি প্রত্যেকে এক একটি রাশি। পদার্থবিজ্ঞানের অন্তর্গত যে কোন রাশিকে ভৌত (physical) রাশি বলে।
কিছু কিছু ভৌত রাশিকে শুধুমাত্র মান দ্বারা সম্পূর্ণরূপে প্রকাশ করা যায়। আবার অনেক ভৌত রাশি রয়েছে যাদেরকে সম্পূর্ণরূপে প্রকাশ করার জন্য মান ও দিক উভয়ই প্রয়োজন হয়। তাই ধর্ম বা বৈশিষ্ট্য অনুসারে ভৌত রাশিগুলোকে আমরা দুই ভাগে বিভক্ত করতে পারি ; যথা—
(ক) স্কেলার রাশি বা অদিক রাশি (Scalar quantity)।
(খ) ভেক্টর রাশি বা দিক রাশি বা সদিক রাশি (Vector quantity)।
যে সব ভৌত রাশির শুধু মান আছে, কিন্তু দিক নেই, তাদেরকে স্কেলার রাশি বা অদিক রাশি বলে। যেমন দৈর্ঘ্য, ভর, সময়, জনসংখ্যা, তাপমাত্রা, তাপ, বৈদ্যুতিক বিভব, দ্রুতি, কাজ ইত্যাদি কেলার বা অদিক রাশি।
যে সব ভৌত রাশির মান এবং দিক দুই-ই আছে, তাদেরকে ভেক্টর রাশি বা দিক রাশি বলে। যেমন সরণ, বেগ, ত্বরণ, মন্দন, বল, ওজন ইত্যাদি ভেক্টর বা দিক রাশি।
কোন একটি ভেক্টর রাশিকে দুভাবে প্রকাশ করা হয়ে থাকে, যথা- (১) অক্ষর দ্বারা এবং (২) সরলরেখা দ্বারা।
১। অক্ষর দ্বারা কোন একটি ভেক্টর রাশিকে চারভাবে প্রকাশ করা হয়, যথা-
(ক) কোন অক্ষরের উপর তীর চিহ্ন দ্বারা রাশিটির ভেক্টর রূপ এবং এর দুই পাশের দুটি খাড়া রেখা দ্বারা এর মান নির্দেশ করা হয়। সাধারণভাবে শুধু অক্ষর দ্বারাও রাশিটির মান নির্দেশ করা হয়।
A অক্ষরের ভেক্টর রূপ Ā এবং মান রূপ | A | বা A
(খ) কোন অক্ষরের উপর রেখা চিহ্ন দ্বারা রাশিটির ভেক্টর রূপ এবং এর দুই পাশের দুটি খাড়া রেখ দ্বারা এর মান নির্দেশ করা হয়।
A অক্ষরের ভেক্টর রূপ Ā এবং মান রূপ । A
(গ) কোন অক্ষরের নিচে রেখা চিহ্ন দ্বারা রাশিটির ভেক্টর রূপ এবং এর দুই পাশের দুটি খাড়া রেখ দ্বারা এর মান নির্দেশ করা হয়।
A অক্ষরের ভেক্টর রূপ এবং মান রূপ | |
(ঘ) মোটা হরফের অক্ষর দিয়ে ভেক্টর রাশি প্রকাশ করা হয়। যেমন A অক্ষরের ভেক্টর রূপ এবং এর মান A ভেক্টর রাশি নির্দেশের ক্ষেত্রে (ক)-এ ব্যবহৃত চিহ্নই শ্রেয়। তাই এই বই-এ আমরা এই পদ্ধতিই ব্যবহার করব।
২। সরলরেখা দ্বারা ভেক্টর রাশি নির্দেশ করতে হলে রাশিটির দিকে বা সমান্তরালে একটি সরলরেখা অংকন করে সরলরেখাটির শেষ প্রান্তে একটি তীর চিহ্ন দ্বারা রাশিটির দিক এবং কোন স্কেলে উত্ত সরলরেখাটির দৈর্ঘ্য দ্বারা এর মান নির্দেশ করা হয়। এ পদ্ধতিকে জ্যামিতিক উপায়ে ভেক্টরের নির্দেশনাও বলে।
মনে করি, একটি ভেক্টর রাশির মান 5 এবং এর দিক পূর্ব দিক। একে সরলরেখা দ্বারা প্রকাশ করতে হবে। এখন AC একটি সরলরেখা পূর্ব- পশ্চিম দিক বরাবর অংকন করে AC সরলরেখা হতে সুবিধামত দৈর্ঘ্যকে একক ধরে এর 5 গুণ দৈর্ঘ্য AB কেটে নিই এবং AB-এর শেষ প্রান্তে পূর্ব দিকে তীর চিহ্ন যুক্ত করি [চিত্র ১:১]। এই তীর চিহ্নিত সরলরেখাই ভেক্টর রাশিটি নির্দেশ করবে। ভেক্টর রাশি নির্দেশী সরলরেখার তীর চিহ্নিত প্রান্ত B-কে শীর্ষবিন্দু বা অন্ত বিন্দু এবং অপর প্রান্ত A-কে আদিবিন্দু বা মূলবিন্দু বা পাদবিন্দু বলে।
একটি ভেক্টর রাশিকে সামান্তরিক সূত্রের দ্বারা বহুভাবে দুটি ভেক্টর রাশিতে বিভক্ত করা যায়। এই পদ্ধতির নাম ভেক্টর রাশির বিভাজন। সুতরাং একটি ভেক্টর রাশিকে দুই বা ততোধিক ভেক্টর রাশিতে বিভক্ত করার প্রক্রিয়াকে ভেক্টর রাশির বিভাজন বা বিশ্লেষণ বলে। এই বিভক্ত ভেক্টর রাশিগুলোর প্রত্যেকটিকে মূল ভেক্টর রাশির এক একটি অংশক বা উপাংশ (Component) বলে।
(i) যে কোন দুই উপাংশে বিভাজন :
মনে করি R একটি ভেক্টর রাশি। তীর চিহ্নিত OB সরলরেখাটি তার মান ও দিক নির্দেশ করছে [চিত্র ১.২২]। OB-এর সাথে দুই পাশে ও কোণ উৎপন্ন করে এরূপ দুটি দিকে একে দুটি উপাংশে বিভক্ত করতে হবে।
এখন O বিন্দু হতে OB-এর সাথে দুই পাশে এবং কোণ করে OA এবং OC রেখা দুটি টানি। OB-কে কর্ণ করে OABC সামান্তরিকটি অঙ্কন করি।
সুতরাং সামান্তরিকের সূত্রানুযায়ী OB দ্বারা সূচিত ভেক্টর রাশি -এর দুটি অংশকের বা উপাংশের মান ও দিক এবং নির্দেশ করবে।
বর্ণনানুসারে OC এবং AB সমান্তরাল এবং OB তাদেরকে যুক্ত করেছে। কাজেই
এখন ত্রিকোণমিতি ও ত্রিভুজের ধর্মানুসারে OAB হতে আমরা পাই,
আবার AB = OC এবং
এবং দ্বারা সূচিত উপাংশ দুটির মান যথাক্রমে P এবং Q-এর সমান ধরে আমরা পাই,
সমীকরণ (13) ও (14) R ভেক্টরের উপাংশের সমীকরণ।
যদি R ভেক্টরকে সমকোণে বিভাজিত করা হয় অর্থাৎ, P এবং Q উপাংশ দুটি পরস্পর সমকোণী হয় [চিত্র ১.২৩], তবে = 90°
একটি ভেক্টর রাশিকে একক ভেক্টর রাশির সাহায্যে প্রকাশ করতে গিয়ে আমরা দুটি বিষয় বিবেচনা করব। একটি দ্বিমাত্রিক ক্ষেত্র ও অপরটি ত্রিমাত্রিক ক্ষেত্র। নিম্নে বিষয় দুটি পৃথকভাবে আলোচিত হল।
ধরা যাক পরস্পর সমকোণে অবস্থিত OX ও OY সরলরেখা দুটি যথাক্রমে X ও Y অক্ষ নির্দেশ করছে [ চিত্র ১.২৪ ]। XY সমতলে X অক্ষের সাথে কোণে অবস্থিত OP রেখাটি দ্বারা r মানের একটি ভেক্টর রাশি -এর মান ও দিক নির্দিষ্ট হয়েছে। আরও ধরা যাক P-এর স্থানাঙ্ক (x, y) এবং ধনাত্মক X ও Y অক্ষে একক ভেক্টর রাশি যথাক্রমে ও ।
P হতে X অক্ষের উপর PN লম্ব টানি ।
তা হলে চিত্র অনুসারে ON = x, NP = y এবং OP =r.
এখন, ত্রিভুজ সূত্র অনুসারে,
চিত্র ১:২৪ হতে আমরা পাই,
বা -এর সমান্তরাল একক ভেক্টর :
বরাবর বা -এর সমাস্তরাল একক ভেক্টর,
= = x + y + z. এখানে P-এর অবস্থানাঙ্ক (x, y, z) |
প্রমাণ : ধরা যাক, পরস্পর সমকোণে অবস্থিত OX, OY ও OZ সরলরেখা তিনটি যথাক্রমে X, Y ও z অক্ষ নির্দেশ করছে | চিত্র ১২৫ ।। OP রেখাটি এই অক্ষ ব্যবস্থায় মানের একটি ভেক্টর রাশি নির্দেশ করছে। আরও মনে করি P-এর স্থানাঙ্ক (x,y,z) এবং ধনাত্মক X, Y ও Z অক্ষে একক ভেক্টর রাশি যথাক্রমে | PN রেখাটি হল XY সমতলের উপর এবং NQ রেখাটি হল OX-এর উপর লম্ব।
তা হলে = +
= +
= + +
কিন্তু,
একটি ভেক্টর রাশিকে একক ভেক্টর রাশির সাহায্যে প্রকাশ করতে গিয়ে আমরা কেবল ত্রিমাত্রিক আয়তাকার বিস্তারের ভেক্টরের বিভাজন বিবেচনা করব।
ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থায় কোনো অবস্থান ভেক্টরকে নিম্নলিখিত উপায়ে লেখা যায় যা ত্রিমাত্রিক আয়তাকার বিস্তারের ভেক্টরের বিভাজন হিসেবে বিবেচিত হয়।
এখানে P-এর অবস্থানাঙ্ক (x,y,z)
ধরা যাক, পরস্পর সমকোণে অবস্থিত OX, OYOZ সরলরেখা তিনটি যথাক্রমে X Y Z অক্ষ নির্দেশ করছে।চিত্র ২:২১]। OP রেখাটি এই অক্ষ ব্যবস্থায় r মানের একটি ভেক্টর রাশি নির্দেশ করছে।
আরও মনে করি ভেক্টরের শীর্ষবিন্দু P-এর স্থানাঙ্ক (x,y,z) এবং ধনাত্মক X, Y ও Z অক্ষে একক ভেক্টর রাশি যথাক্রমে । PN রেখাটি হলো XY সমতলের উপর এবং NQ রেখাটি হলো OX-এর উপর লম্ব।
চিত্র হতে ভেক্টর যোগের নিয়ম অনুসারে পাই,
কিন্তু
:-
এখানে x y ও z হলো যথাক্রমে X, Y ও Z অক্ষ বরাবর ভেক্টরের উপাংশের মান এবং হলো ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থার অবস্থান ভেক্টর।
চিত্র ২.২১ হতে, OP2 = ON2 + NP2 এবং ON2 = OQ2 + QN2
OP2 = OQ2 + QN2 + NP2 বা, r2 = x2 + y2 + z2
:- .. (2.17)
দুটি দিক রাশি বা ভেক্টর রাশির গুণফল সাধারণত দুই প্রকার, যথা—
এই দুটি গুণন বা গুণফল নিম্নে পৃথক পৃথকভাবে আলোচনা করা হল।
দুটি ভেক্টর রাশির কেলার গুণফল একটি স্কেলার রাশি হবে যার মান রাশি দুটির মান এবং তাদের মধ্যবর্তী কোণের কোসাইনের (cosine) গুণফলের সমান। ভেক্টর রাশি দুটির মাঝে (.) চিহ্ন দিয়ে ডট গুণফল প্রকাশ করা হয় এবং পড়তে হয় “প্রথম রাশি ডট দ্বিতীয় রাশি।”
বা, স্কেনার গুণফল দুটি ভেক্টরের মানের গুণফলের সাথে তাদের মধ্যবর্তী কোণের কোসাইনের গুণফল।
ব্যাখ্যা ঃ মনে করি ও দুটি ভেক্টর রাশি। তীর চিহ্নিত OA ও OC সরলরেখা রাশি দুটির মান ও দিক নির্দেশ করছে [চিত্র ২.৩০)। এরা পরস্পরের সাথে কোণে আনত। তাদের স্কেলার বা অদিক গুণফল = . দ্বারা নির্দেশ করা হয় এবং পড়তে হয় ডট কাজেই সংজ্ঞা অনুসারে পাই,
. = l l l cos α
বা, = PQ cos α .. (33)
এখানে 0 <α <π
সমীকরণ (33) হতে দেখা যায়, গুণফল একটি স্কেলার রাশি।
(ক) যদি α = 0° হয়, তবে . - PQ cos 0° = PQ। এক্ষেত্রে ভেক্টর দুটি পরস্পরের সমান্তরাল হবে।
(খ) যদি α = 90° হয়, তবে . =PQ cos 90° = 0 । এক্ষেত্রে ভেক্টর দুটি পরস্পর লম্ব হবে।
(গ) যদি α= 180° হয়, তবে .= PQ cos 180° = - PQ। এক্ষেত্রে ভেক্টর দুটি পরস্পরের সমান্তরাল এবং বিপরীতমুখী হবে।
বল এবং সরণ উভয়েই ভেক্টর রাশি। কিন্তু এদের স্কেলার গুণফল কাজ (W) একটি স্কেলার রাশি অর্থাৎ
W = .. = Fs cos α.. (34)
স্থিতিশক্তি, বৈদ্যুতিক বিভব ইত্যাদিও ভেক্টর রাশির স্কেলার গুণফলের উদাহরণ।
ব্যাখ্যা : মনে করি . ও . দুটি ভেক্টর রাশি। এরা পরস্পরের সাথে α কোণে O বিন্দুতে ক্রিয়া করে।
অতএব এদের ভেক্টর গুণফল বা দিক গুণফল—
= × =
বা, = ×
=
এখানে (ইটা) একটি একক ভেক্টর এর দিক নির্দেশ করে [ চিত্র ২.৩১ ও ২.৩২ ]।
ডান হাতি স্ক্রু নিয়ম : ভেক্টর দুটি যে সমতলে অবস্থিত সেই সমতলের উপর লম্বভাবে একটি ডান হাতি স্কুকে রেখে প্রথম ভেক্টর হতে দ্বিতীয় ভেক্টরের দিকে ক্ষুদ্রতম কোণে ঘুরালে স্কুটি যে দিকে অগ্রসর হয় সেই দিকই হবে তথা এর দিক।
উপরোক্ত নিয়ম অনুসারে × এর অভিমুখ হবে উপরের দিকে। চিত্র ১-৩৩] এবং x এর অভিমুখ হবে নিচের দিকে [চিত্র ২.৩৪] অর্থাৎ প্রথম ক্ষেত্রে ডান হাতি স্কুর দিক হবে ঘড়ির কাটার বিপরীতমুখী (Anti- clockwise) এবং দ্বিতীয় ক্ষেত্রে ঘড়ির কাঁটার দিকে (Clockwise) । Anti-clockwise direction positive (ধনাত্মক) ধরা হয় এবং clockwise direction-কে Negative (ঋণাত্মক) ধরা হয়।
একটি ভেক্টর রাশি যে ধ্রুবক হবে এমন কোনো কথা নেই। একটি ভেক্টর রাশি অন্য স্কেলার রাশির উপর নির্ভর করতে পারে। যেমন গতিশীল বস্তুর অবস্থান ভেক্টর সময় t এর উপর নির্ভর করে, অর্থাৎ অবস্থান ভেক্টর হচ্ছে সময় t এর অপেক্ষক। তেমনিভাবে সুষম ত্বরণে গতিশীল।
বস্তুর বেগ হচ্ছে সময় t এর অপেক্ষক। কোনো তড়িৎ আধান কর্তৃক সৃষ্ট তড়িৎক্ষেত্রের কোনো বিন্দুর তড়িৎ প্রাবল্য আধান থেকে বিন্দুটির দূরত্বের উপর নির্ভর করে। সাধারণ স্কেলার রাশির ন্যায় ভেক্টর রাশিরও অন্তরীকরণ করা যায়। ধরা যাক, একটি ভেক্টর যা স্কেলার রাশি u এর উপর নির্ভর করে অর্থাৎ ভেক্টর রাশি দুই স্কেলার রাশি " এর অপেক্ষক বা (u)। তাহলে
এখানে u হলো “ এর বৃদ্ধি এবং ∆হলো এর বৃদ্ধি (চিত্র : ২.৩৫)।
তাহলেu এর সাপেক্ষে এর অন্তরক হবে,
.. (2.26)
যদি কোনো স্থানের একটি এলাকায় প্রতিটি বিন্দুতে (x, y, z)কে একটি অন্তরীকরণযোগ্য রাশি হিসেবে সংজ্ঞায়িত করা যায় অর্থাৎ যদি একটি অন্তরীকরণযোগ্য স্কেলার অপেক্ষক হয়, তাহলে এর গ্রেডিয়েন্ট বা grad বা এর সংজ্ঞা হলো :
.. (2.31)
এটি একটি ভেক্টর রাশি। এর মান অবস্থানের সাপেক্ষে ঐ স্কেলার রাশির সর্বোচ্চ বৃদ্ধিহার নির্দেশ করে। তাছাড়া এ বৃদ্ধিহারের দিকই হবে স্কেলার রাশিটির গ্রেডিয়েন্টের দিক। স্কেলার ক্ষেত্র থেকে ভেক্টর ক্ষেত্রে উত্তরণের কৌশলই হচ্ছে স্কেলার রাশির গ্রেডিয়েন্ট নির্ণয় করা। গ্রেডিয়েন্ট হলো বিভিন্ন অক্ষের সাপেক্ষে কোনো স্কেলার ফাংশনের ঢাল।
যদি কোনো স্থানের একটি এলাকায় প্রতিটি বিন্দুতে (x, y, z) = কে একটি অন্তরীকরণযোগ্য
রাশি হিসেবে সংজ্ঞায়িত করা যায় অর্থাৎ যদি একটি অন্তরীকরণযোগ্য ভেক্টর অপেক্ষক হয়, তাহলে এর ডাইভারজেন্স
(div ) বা এর সংজ্ঞা হলো :
... (2.32)
লক্ষ্যণীয় যে, ডাইভারজেন্স হচ্ছে এবং এর ডট বা স্কেলার গুণফল এবং এটি একটি স্কেলার রাশি।
ডাইভারজেন্সের মাধ্যমে একটি ভেক্টর ক্ষেত্রকে স্কেলার ক্ষেত্রে রূপান্তর করা যায়। উল্লেখ্য যে, . = . হলেও কোনোভাবেই = . হবে না। কোনো ভেক্টর ক্ষেত্রের কোনো বিন্দুতে কোনো প্রবাহীর ডাইভারজেন্স ধনাত্মক হলে বুঝতে হবে, হয় প্রবাহীটি প্রসারিত হচ্ছে অর্থাৎ এর ঘনত্ব হ্রাস পাচ্ছে অথবা বিন্দুটি প্রবাহীটির একটি উৎস।
আবার ডাইভারজেন্স ঋণাত্মক হলে, হয় প্রবাহীটি সঙ্কুচিত হচ্ছে অর্থাৎ ঐ বিন্দুতে এর ঘনত্ব বৃদ্ধি প্রাপ্ত হচ্ছে বা বিন্দুটি একটি ঋণাত্মক উৎস বা সিঙ্ক ।
আবার কোনো ভেক্টর ক্ষেত্রের ডাইভারজেন্স শূন্য হলে ঐ ভেক্টর ক্ষেত্রকে সলিনয়ডাল বলে। অর্থাৎ এক্ষেত্রে ঐ বিন্দুতে যে পরিমাণ প্রবাহী প্রবেশ করে ঠিক সেই পরিমাণ প্রবাহী বেরিয়েও যাবে। অর্থাৎ এক্ষেত্রে div = 0
যদি কোনো স্থানের একটি এলাকায় প্রতিটি বিন্দুতে (x, y, z) = কে একটি অন্তরীকরণযোগ্য রাশি হিসেবে সংজ্ঞায়িত করা যায় অর্থাৎ যদি একটি অন্তরীকরণযোগ্য ভেক্টর অপেক্ষক হয়, তাহলে এর কার্ল
(curl ) বা এর সংজ্ঞা হলো :
... (2.33)
কোনো ভেক্টর ক্ষেত্রের কার্ল একটি ভেক্টর রাশি। এ ভেক্টরটির দিক ঐ ক্ষেত্রের উপর অঙ্কিত লম্ব বরাবর। এটি ঐ ক্ষেত্রের ঘূর্ণন ব্যাখ্যা করে। কোনো বিন্দুর চারদিকে ভেক্টরটি কতবার ঘোরে কার্ল তা নির্দেশ করে। যদি কোনো ভেক্টরের কার্ল শূন্য হয় তবে এটি অঘূর্ণনশীল (irrotational) হবে। অর্থাৎ = হলে ক্ষেত্রটি অঘূর্ণনশীল এবং সংরক্ষণশীল আর = হলে ক্ষেত্রটি ঘূর্ণনশীল এবং অসংরক্ষণশীল । রৈখিক বেগ এর কার্ল কৌণিক বেগ এর দ্বিগুণ, অর্থাৎ = 2 । কোনো ভেক্টরের কার্লের মান ঐ ভেক্টরের ক্ষেত্রে একক ক্ষেত্রফলের উপর সর্বোচ্চ রেখা যোগজের সমান। কোনো ভেক্টর ক্ষেত্রের কার্লের ডাইভারজেন্স শূন্য অর্থাৎ ()= 0 l
কোনো স্থানের কোনো এলাকা বা অঞ্চলের প্রতিটি বিন্দুতে যদি একটি স্কেলার রাশি [ (x, y, z) ] বিদ্যমান থাকে, তবে ঐ অঞ্চলকে ঐ রাশির স্কেলার ক্ষেত্র বলে ।
এখানে (x, y, z) কে বলা হয় একটি স্কেলার ফাংশন এবং ঐ অঞ্চলে একটি স্কেলার ক্ষেত্র নির্দেশ করে। যেমন, ঢাকা শহরের প্রতিটি বিন্দুতে একটি তাপমাত্রা আছে। যেকোনো সময়ে এ শহরের যেকোনো বিন্দুতে তাপমাত্রা জানা যাবে। তাপমাত্রা একটি স্কেলার রাশি। তাপমাত্রাকে আমরা একটা স্কেলার ফাংশন এবং ঢাকা শহরকে তাপমাত্রার স্কেলার ক্ষেত্র বিবেচনা করতে পারি। তেমনি কোনো আহিত বস্তুর চারপাশে তড়িৎ বিভব থাকে। যেহেতু তড়িৎ বিভব স্কেলার রাশি,
আমরা বলতে পারি আহিত বস্তুর চারপাশে একটি স্কেলার ক্ষেত্র বিদ্যমান। উদাহরণ : (x, y, z) = 5x2y - 3yz একটি স্কেলার ক্ষেত্র নির্দেশ করে।
এখানে (x, y, z) কে বলা হয় একটি ভেক্টর ফাংশন এবং ঐ অঞ্চলে একটি ভেক্টর ক্ষেত্র নির্দেশ করে। যেমন কোনো প্রবহমান তরল পদার্থের ভিতরে প্রতিটি বিন্দুতে তরলের একটি বেগ আছে। যেকোনো সময়ে তরলের যেকোনো বিন্দুতে এর বেগ জানা যায়। বেগ একটি ভেক্টর রাশি। বেগকে আমরা একটি ভেক্টর ফাংশন এবং প্রবহমান তরলকে বেগের ভেক্টর ক্ষেত্র বিবেচনা করতে পারি। তেমনি একটি আহিত বস্তুর চারপাশে তড়িৎ প্রাবল্য থাকে। যেহেতু তড়িৎ প্রাবল্য ভেক্টর রাশি, আমরা বলতে পারি আহিত বস্তুর চারপাশে একটি ভেক্টর ক্ষেত্র বিদ্যমান।
ভেক্টর ক্যালকুলাসে বহুল ব্যবহৃত অপারেটরটি হচ্ছে (ডেল)। স্যার হ্যামিলটন এটি আবিষ্কার করেন। আগে এটি নাবলা নামে পরিচিত ছিল । এটি একটি ভেক্টর অপারেটর। হচ্ছে,
=
ভেক্টর অপারেটরের সাহায্যে তিনটি রাশি তৈরি করা হয় যেগুলো পদার্থবিজ্ঞানের বিভিন্ন সূত্র ও তত্ত্ব ব্যাখ্যা করতে খুবই প্রয়োজন হয় । এগুলো হচ্ছে গ্রেডিয়েন্ট, ডাইভারজেন্স ও কার্ল।
১। একক ভেক্টর (Unit vector) : যে ভেক্টর রাশির মান এক একক তাকে একক ভেক্টর বলে। মান শূন্য নয় এরূপ একটি ভেক্টরকে এর মান দ্বারা ভাগ করলে ঐ ভেক্টরের দিকে বা সমান্তরালে একটি একক ভেক্টর পাওয়া যাবে।
একক ভেক্টরকে প্রকাশ করতে সাধারণত ছোট অক্ষরের উপর একটি টুপি চিহ্ন (^) দেয়া হয়। যেমন-
ইত্যাদি দ্বারা একক ভেক্টর প্রকাশ করা হয়।
ধরি, একটি ভেক্টর যার মান, A ≠ 0
-এর দিকে একক ভেক্টর
কাজেই কোন একটি ভেক্টর এর মান, A = 4 একক এবং এর দিকে একক ভেক্টর হলে, [চিত্র ১:২]। অর্থাৎ কোন ভেক্টরের মানকে ঐ ভেক্টরের একক ভেক্টর দ্বারা গুণ করলে ভেক্টরটি পাওয়া যায়।
২। সম-ভেক্টর বা সমান ভেক্টর (Equal vector) : একই দিকে ক্রিয়ারত একাধিক সমজাতীয় ভেক্টরের মান সমান হলে তাদেরকে সম-ভেক্টর বা সমান ভেক্টর বলে। পাদবিন্দু বা আদিবিন্দু যেখানেই হোক না কেন ভেক্টরগুলো পরস্পরের সমাস্তরান এবং মান সমান হলে তাদেরকে সম-ভেক্টর বলে।
১.৩ চিত্রে P, Q, S তিনটি সম-ভেক্টর।
৩। বিপরীত বা ঋণ ভেক্টর (Negative vector) : বিপরীত দিকে ক্রিয়ারত দুটি সমজাতীয় ভেক্টরের মান সমান হলে তাদেরকে একে অপরের বিপরীত বা ঋণ ভেক্টর বলে।
১.৪ চিত্রে
এর বিপরীত ভেক্টর
এখানে, AB = BA
৪। স্বাধীন ভেক্টর ( Free vector) : কোন ভেক্টর রাশির পাদবিন্দু কোথায় হবে তা যদি ইচ্ছেমত ঠিক করা যায়, তবে ঐ ভেক্টরকে স্বাধীন ভেক্টর বলা হয়। । [চিত্র ১.৫-এ একটি স্বাধীন ভেক্টর। ]
৫। সীমাবদ্ধ ভেক্টর (Localised vector) : যদি কোন নির্দিষ্ট বিন্দুকে ভেক্টরের পাদবিন্দু হিসেবে ঠিক করে রাখা হয়, তবে তাকে সীমাবদ্ধ ভেক্টর বলে।
৬। অবস্থান ভেক্টর (Position vector) : প্রসঙ্গ কাঠামোর মূল বিন্দুর সাপেক্ষে কোন বিন্দুর অবস্থান যে ভেক্টরের সাহায্যে নির্ণয় করা হয় তাকে অবস্থান ভেক্টর বলে।
মনে করি পরস্পর সমকোণে অবস্থিত X ও Y দুটি অক্ষ, এদের মূল বিন্দু OI P যে কোন একটি বিন্দু।
এখানে ভেক্টরটি O বিন্দু সাপেক্ষে P বিন্দুর অবস্থান নির্দেশ করছে। সুতরাং একটি অবস্থান ভেক্টর [চিত্র ১.৬ ]।
অবস্থান ভেক্টরকে অনেক সময় ব্যাসার্ধ ভেক্টর (radius vector) বলে এবং দিয়ে প্রকাশ করা হয়।
৭। সদৃশ ভেক্টর ( Like vector) : সমজাতীয় অসম মানের দুটি ভেক্টর ও যদি একই দিকে ক্রিয়া করে তবে তাদেরকে সদৃশ ভেক্টর বলে [চিত্র ১:৭]। উদাহরণ,
৮। বিসদৃশ ভেক্টর (Unlike vector) : সমজাতীয় অসম মানের দুটি ভেক্টর ও যদি বিপরীত দিকে ক্রিয়া করে, তবে তাদেরকে বিসদৃশ ভেক্টর বলে । চিত্র [১.৮]।
৯। নাল বা শূন্য ভেক্টর (Null or Zero vector) : যে ভেক্টর রাশির মান শূন্য, তাকে নাল বা শূন্য ভেক্টর বলে। শূন্য ভেক্টরের পাদবিন্দু এবং শীর্ষবিন্দু একই। একে 0 দ্বারা সূচিত করা হয়।
১০। আয়তাকার বা আয়ত একক ভেক্টর (Rectangular unit vector) : ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থায় ধনাত্মক X, Y এবং Z অক্ষের দিকে ব্যবহৃত যথাক্রমে এবং একক ভেক্টরগুলোকে আয়তাকার বা আয়ত একক ভেক্টর বলে।
১১। বিপ্রতীপ ভেক্টর (Reciprocal vector) : দুটি সমান্তরাল ভেক্টরের একটির মান অপরটির বিপ্রতীপ হলে তাদেরকে বিপ্রতীপ ভেক্টর বলে। উদাহরণ, = , = । এখানে ও বিপ্রতীপ ভেক্টর।
১২। সমরেখ ভেক্টর (Co-linear vector) : দুই বা ততোধিক ভেক্টর এমন হয় যে তারা একই রেখায় বা সমান্তরালে ক্রিয়া করে, তাদেরকে সমরেখ ভেক্টর বলে [চিত্র ১.১০]
১৩। সম-তলীয় ভেক্টর (Co-planar vector) : দুই বা ততোধিক ভেক্টর একই তলে অবস্থান করলে তাদেরকে সম-তলীয় ভেক্টর বলে [চিত্র ১.১১]।
১৪। সঠিক ভেক্টর (Proper vector ): যে সকল ভেক্টরের মান শূন্য নয়, তাদেরকে সঠিক ভেক্টর বলে।
১৫। সম-প্রারম্ভিক ভেক্টর (Co-initial vector) : একই মূল বা পাদবিন্দুবিশিষ্ট ভেক্টরসমূহকে সম- প্রারম্ভিক ভেক্টর বলে।
একই জাতীয় দুটি ভেক্টর রাশিকে যোগ বা বিয়োগ করা যায়। যেমন সরণের সাথে কেবল সরণই যোগ বা বিয়োগ করা চলে। সরণের সাথে বেগের যোগ বা বিয়োগের প্রশ্নই ওঠে না।
যেমন ধরা যাক, একটি নৌকায় দাঁড়ের বেগ ঘণ্টায় 8 কিলোমিটার এবং একটি নদীর পানির স্রোতের বেগ ঘণ্টায় 6 কিলোমিটার। নৌকাটিকে ঐ নদীর এক পাড় হতে সোজা অপর পাড়ের দিকে চালালে, নৌকাটির উপর যে দুটি বেগ ক্রিয়া করবে এদের যোগফল (8 + 6) = 14 কিলোমিটার / ঘণ্টা দ্বারা নৌকাটির প্রকৃত বেগ পাওয়া যাবে না—প্রকৃত বেগ সম্পূর্ণ আলাদা হবে। আবার নৌকাটির গতিমুখ ঐ দুই বেগের মাঝামাঝি কোন এক দিকে হবে। এই কারণে ভেক্টর রাশির যোগ-বিয়োগ জ্যামিতিক পদ্ধতি অনুসারে করতে হয়।
একই অভিমুখী দুটি ভেক্টর রাশি যোগ করতে হলে রাশি দুটিকে একই দিকে নির্দেশ করতে হয়, আর বিয়োগ করতে হলে একটি ভেক্টর রাশিকে অপরটির বিপরীত দিকে নির্দেশ করতে হয়। কিন্তু দুই বা ততোধিক ভেক্টর রাশি একটি বিন্দুতে ক্রিয়া করলে এদের যোগফল আর একটি নতুন ভেক্টর রাশি হবে। দুই বা ততোধিক ভেক্টর রাশি যোগে যে একটি নতুন ভেক্টর রাশি হয় তাকে এদের লবি ( Resultant) বলে। অর্থাৎ লব্ধি হল ভেক্টর রাশিগুলোর সম্মিলিত ফল।
জ্যামিতিক পদ্ধতিতে ভেক্টর রাশির যোগ নিম্নলিখিত পাঁচটি সূত্রের সাহায্যে করা যায়; যথা-
(১) সাধারণ সূত্র (General law)
(২) ত্রিভুজ সূত্র (Law of triangle )
(৩) বহুভুজ সূত্র (Law of polygon )
(৪) সামান্তরিক সূত্র (Law of parallelogram) এবং
(৫) উপাংশ সূত্র (Law of components)
এই অনুচ্ছেদে প্রথম চারটি সূত্র আলোচনা করা হল :
সূত্র : সমজাতীয় দুটি ভেক্টরের প্রথমটির শীর্ষ বা শেষবিন্দু এবং দ্বিতীয়টির আদি বিন্দু একই বিন্দুতে স্থাপন করে প্রথম ভেক্টরের আদি বিন্দু ও দ্বিতীয় ভেক্টরের শীর্ষবিন্দুর মধ্যে সংযোগকারী সরলরেখার দিকে লব্ধি ভেক্টরের দিক এবং ঐ সরলরেখার দৈর্ঘ্য ভেক্টর দুটির লব্ধির মান নির্দেশ করবে।
ধরা যাক একই বিন্দুতে একই সময়ে ক্রিয়াশীল দুটি ভেক্টর রাশি ও -এর লব্ধি নির্ণয় করতে হবে।
নির্দেশী সরলরেখা AB-এর শীর্ষবিন্দু B তে নির্দেশী সরলরেখার আদিবিন্দু থাকে। এরূপে BC রেখা দ্বারা নির্দেশ করে -এর আদিবিন্দু A এবং -এর শীর্ষবিন্দু C যুক্ত করি এবং রেখাটিকে A হতে C অভিমুখে তীর চিহ্নিত করি [চিত্র ১১২]। তা হলে তীর চিহ্নিত AC রেখাই নির্দেশ করবে। এখানে রাশি দুটির যোগফল নিম্ন উপায়ে লেখা হয় —
= + (1)
অনুরূপে দুই বা ততোধিক ভেক্টর রাশি যোগ করা যায়।
১.১৩ চিত্রে তিনটি ভেক্টর রাশি , ও যথাক্রমে তীর চিহ্নিত OA, AB ও BC সরলরেখায় নির্দেশ করে OC সরলরেখা দ্বারা এদের লব্ধি সূচিত হয়েছে।
এখানে লব্ধি, = + +
ব্যাখ্যা ঃ মনে করি ও দুটি ভেক্টর যোগ করতে হবে। প্রথমে -এর প্রান্ত বা শীর্ষবিন্দুর সাথে -এর আদি বিন্দু যুক্ত করে ভেক্টর দুটি মানে ও দিকে বাহু AB ও BC দ্বারা সূচিত করা হল। এখন -এর আদি বিন্দু ও -এর শেষ বিন্দু যোগ করে ABC ত্রিভুজটি সম্পূর্ণ করা হল। AC বাহুটিই দিকে ও মানে ও -এর লব্ধি ভেক্টর নির্দেশ করে [চিত্র ১.১৪]।
অর্থাৎ,
বা, + =
পুনঃ,
বা,
ব্যাখ্যা ঃ মনে করি, পাঁচটি ভেক্টর রাশি [চিত্র ১.১৫। এদের লব্ধি নির্ণয় করতে হবে। এখন প্রথম ভেক্টর রাশির শীর্ষবিন্দুর উপর দ্বিতীয় ভেক্টর রাশির পাদবিন্দু, দ্বিতীয় ভেক্টর রাশির শীর্ষবিন্দুর উপর তৃতীয় ভেক্টর রাশির পাদবিন্দু স্থাপন করি এবং এমনিভাবে ভেক্টর রাশিগুলোকে পর পর স্থাপন করি। তাহলে বহুভুজ সূত্রানুসারে প্রথম ভেক্টর রাশির আদি বিন্দু এবং শেষ ভেক্টর রাশির শীর্ষবিন্দুর সংযোজক ভেক্টর রাশি -ই উল্লিখিত ভেক্টর রাশিগুলোর লব্ধির মান ও দিক নির্দেশ করবে।
লব্ধি,
মনে করি O বিন্দুতে একটি কণার উপর ও ই দুটি ভেক্টর রাশি একই সময়ে কোণে ক্রিয়া করছে [চিত্র ১.১৬। OA ও OC-কে সন্নিহিত বাহু ধরে OABC সামন্তরিকটি অংকন করি এবং OB যুক্ত করি। এই সূত্রানুসারে উভয় ভেক্টরের ক্রিয়াবিদু O থেকে অংকিত কৰ্ণ -ই ভেক্টর P ও Q-এর লব্ধি R নির্দেশ করে।
বা, + =
মনে করি লব্ধির মান R এবং কোণটি সূক্ষ্মকোণ। এখন B বিন্দু হতে OA-এর বর্ধিত অংশের উপর BN টানি যা বর্ধিত OA বাহুকে N বিন্দুতে ছেদ করল।
AB ও OC সমান্তরাল।
OB2 = ON2 + BN2 = (OA + AN)2 + BN2 = OA2 + 20A.AN + AN2 + BN2 আবার, BNA সমকোণী ত্রিভুজে, AB2 = AN2 + BN2 বা, OC2 = AN2 + BN2 [ AB = OC ] এখন ত্রিকোণমিতির সাহায্যে আমরা পাই, cos AN = AB cos = OC cos সুতরাং OB2 = OA2 + AB2 + 20A.AB cos বা, OB2 = OA2 + OC2 + 2OA. OC cos বা, R2 = P2 + Q2 + 2PQ cos (4) মনে করি P-এর সাথে কোণ উৎপন্ন করে লব্ধি R ক্রিয়া করছে। সুতরাং OBN সমকোণী ত্রিভুজে, (5) BAN সমকোণী ত্রিভুজে, সমীকরণ (4) এবং সমীকরণ (5) হতে যথাক্রমে R এবং পাওয়া যায়। সুতরাং, দুটি ভেক্টর একই দিকে ক্রিয়াশীল হলে এদের লন্ধির মান হবে ভেক্টরদ্বয়ের যোগফল এবং দিক হবে ভেক্টরদ্বয় যেদিকে ক্রিয়া করে সেদিকে। মনে করি দুটি ভেক্টর রাশি এবং একই সময়ে কোন বিন্দুতে কোণে ক্রিয়া করছে। ভেক্টর যোগের সামান্তরিক সূত্রানুসারে এদের লব্ধির মান (ক) উপরোক্ত সমীকরণ হতে বলা যায় লব্ধি -এর মান এবং -এর মধ্যবর্তী কোণের উপর নির্ভর করে। -এর মান সর্বাধিক হবে যখন cos C-এর মান সর্বাধিক হবে অর্থাৎ cos = 1 = cos 0° বা, = 0° হবে। লব্ধির সর্বোচ্চ মান অন্যভাবে বলা যায়, দুটি ভেক্টর রাশির লন্ধির মান এদের যোগফল অপেক্ষা বড় হতে পারে না । (খ) লব্ধি R-এর সর্বনিম্ন মান হবে যখন cos -এর মান সর্বনিম্ন হবে অর্থাৎ cos =- 1 = cos 180° বা, = 180° হবে। অতএব, দুটি ভেক্টর রাশি যখন একই সরলরেখা বরাবর পরস্পর বিপরীত দিকে ক্রিয়া করে তখন তাদের লঙ্ঘির মান সর্বনিম্ন হবে এবং লক্ষির সর্বনিম্ন মান ভেক্টর রাশি দুটির বিয়োগফলের সমান হবে। সুতরাং বলা যায়, দুটি ভেক্টর রাশির সর্বনিম্ন মান এদের বিয়োগফল অপেক্ষা ছোট হতে পারে না। এখানে উল্লেখ্য যে (7) নং সমীকরণে ~ চিহ্নটি P এবং Q-এর মধ্যে বিয়োগফল নির্দেশ করে, তবে P এবং Q এদের মধ্যে যেটি বড় সেটি আগে লিখতে হবে অর্থাৎ Q যদি P অপেক্ষা বড় হয় তবে P Q =QP দুটি ভেক্টর রাশির বিয়োগ বলতে একটি ভেক্টরের সাথে অপরটির ঋণাত্মক ভেক্টরের যোগফল বুঝায়। -> , হলো ভেক্টর দুটির বিয়োগফল হলে দেখা যায়, = - = + (- ) ভেক্টর যোগের ত্রিভুজ সূত্র, সামান্তরিক সূত্র ও বহুভুজ সূত্র প্রভৃতি ভেক্টরের বিয়োগের ক্ষেত্রেও প্রযোজ্য। ধরা যাক ও ভেক্টর দুটির বিয়োগফল নির্ণয় করতে হবে। প্রথমে ভেক্টর দুটিকে মান ও দিকে অপরিবর্তিত রেখে একই আদি বিন্দু হতে OA ও OB অঙ্কন করতে হয় [চিত্র ১:১৭]। এরপর -এর প্রান্ত বিন্দু B-এর সাথে -এর প্রান্ত বিন্দু A যোগ করলে -ই মানে ও দিকে – ভেক্টরকে সূচিত করে। অতএব, = - ধরা যাক ও দুটি ভেক্টর। ও ভেক্টর দুটিকে একই আদি বিন্দু হতে উপযুক্ত বাহু দ্বারা সূচিত করতে হয়[চিত্র ১:১৮]। এরপর -এর সমান অথচ বিপরীতমুখী বাহু দ্বারা - -কে নির্দেশ করা হয়। এখন OA ও OC-কে সন্নিহিত বাহু ধরে OADC সামান্তরিক অঙ্কন করলে কর্ণ উক্ত ভেক্টর দুটির বিয়োগফল নির্দেশ করে । অর্থাৎ, কর্ণ = + = + (- ) = - । + = + প্রমাণ : মনে করি, ও দুটি ভেক্টর রাশি এবং R রাশি দুটির লব্ধি [ চিত্র ১:১৯ ]। ত্রিভুজ সূত্র অনুসারে, OAB ত্রিভুজে = + অর্থাৎ = + এখন OABC সামান্তরিক অঙ্কন করি এবং OC ও CB-এ যথাক্রমে AB ও OA এর ন্যায় তীর চিহ্নিত করি। OCB ত্রিভুজে = + (ত্রিভুজ সূত্র অনুসারে), 'অর্থাৎ + = + এটিই হল বিনিময় সূত্র । তেমনি স্কেলার রাশিও বিনিময় সূত্র মেনে চলে। মনে করি , এবং তিনটি ভেক্টর রাশি [চিত্র ১:২০ ]। এদেরকে যথাক্রমে , এবং রেখা দ্বারা সূচিত করা হয়েছে। এখন AC, BD এবং AD যোগ করি। অতএব ত্রিভুজের সূত্র হতে পাই, ABC ত্রিভুজে = + = + ACD ত্রিভুজে, = + =( + ) = আবার, BCD ত্রিভুজে, = + = + (9) এবং ABD ত্রিভুজে, = + = + ( + ) (10) সমীকরণ (9) এবং সমীকরণ (10) হতে পাই, (+) + = + (+ ) লব্ধির দিক নির্ণয় :
লব্ধির সর্বোচ্চ এবং সর্বনিম্ন মান
(Maximum and minimum value of the resultant)
অতএব, দুটি ভেক্টর যখন একই সরলরেখা বরাবর পরস্পর একই দিকে ক্রিয়া করে তখন তাদের লব্ধির মান সর্বোচ্চ হবে এবং এই সর্বোচ্চ মান ভেক্টর রাশি দুটির যোগফলের সমান হবে।
লব্ধির সর্বনিম্ন মান,
১.৬ ভেক্টরের বিয়োগ
Subtraction of vectors
(ক) ত্রিভুজ সূত্রের সাহায্যে ভেক্টরের বিয়োগফল নির্ণয় :
(খ) সামান্তরিকের সূত্রের সাহায্যে ভেক্টরের বিয়োগফল নির্ণয় ঃ
১.৭ ভেক্টর যোগের কয়েকটি সূত্র
Some laws of vector addition
(ক) বিনিময় সূত্র (Commutative law) :
(খ) সংযোজন সূত্র (Associative law) : ( + )+ - +(+ )
আরও দেখুন...